فهرست سریع مطالب

تبلیغات
تبلیغات

سیاه چاله ، بخش اول ( تاریخچه و عمر طلایی)

سیاه چاله ناحیه‌ای در فضا-زمان با گرانشی چنان نیرومند است که هیچ چیز حتی ذرات و تابش‌های الکترومغناطیسی مثل نو نمی‌توانند از میدان گرانش آن بگریزند.
امتیاز این نوشته از نظر شما عزیزان
5/5

طبق رسم سایت نهایت یادگیری روز های شنبه به مطالبی راجع به آسمان می پردازیم.شما عزیزان می توانید کانال تلگرام و کانال روبیکا و همچنین پیج نهایت یادگیری را دنبال کنید. می خواهیم به سیاه چاله ، این جرم نا شناخته ، بپردازیم در این بخش به تاریخچه و عمر این اجرام می پردازیم ، در بخش دوم به ویژگی ها و ساختار آن ها خواهیم پرداخت در بخش سوم به شکل گیری و تکامل سیاه چاله ها می پردازیم ، در بخش چهارم به طبقه بندی آنان خواهیم پرداخت ، در بخش پنجم به شواهد تجربی می پردازیم و بالاخره در بخش آخر به دیگر موارد راجع به آنان می پردازیم.

سیاه‌ چاله ناحیه‌ای در فضا-زمان با گرانشی چنان نیرومند است که هیچ چیز حتی ذرات و تابش‌های الکترومغناطیسی مثل نو نمی‌توانند از میدان گرانش آن بگریزند. نظریه نسبیت عام آلبرت اینشتین پیش ‌بینی می‌ کند که یک جرم به اندازه کافی فشرده شده، می‌تواند سبب تغییر شکل و خمیدگی فضا-زمان و تشکیل سیاه چاله شود. مرز این ناحیه از فضا زمان که هیچ چیزی پس از عبور از آن نمی ‌تواند به بیرون برگردد را افق رویداد می‌نامند. صفت «سیاه» در نام سیاه ‌چاله برگرفته از این واقعیت است که همهٔ نوری را که از افق رویداد آن می‌گذرد به دام می‌اندازد؛ از این دیدگاه سیاه چاله رفتاری شبیه به جسم سیاه در ترمودینامیک دارد. از سوی دیگر نیز، نظریه میدانهای کوانتومی در فضا زمان خمیده پیش‌بینی می‌کند که افق‌های رویداد نیز تابشی به نام تابش هاوکینگ گسیل می‌کنند که طیف آن همانند طیف جسم سیاهی است که دمای آن با جرمش نسبت وارونه دارد. میزان دما در مورد سیاه چاله‌های ستاره‌ای در حد چند میلیاردم کلوین است و از این رو ردیابی آن دشوار است.

اجسامی که به دلیل میدان گرانشی بسیار قوی اجازهٔ گریز به نور نمی‌دهند برای اولین بار در سده ۱۸ (میلادی) توسط جان میچل و پیر سیمون لاپلاس مورد توجه قرار گرفتند. نخستین راه حل نوین نسبیت عام که در واقع ویژگی‌های یک سیاهچاله را توصیف می‌نمود در سال ۱۹۱۶ میلادی توسط کارل شوارتزشیلد کشف شد. هر چند تعبیر آن به صورت ناحیه‌ای گریزناپذیر از فضا، تا چهار دهه بعد به خوبی درک نشد، برای دوره‌ ای طولانی این چالش مورد کنجکاوی ریاضیدانان بود تا اینکه در میانه دهه ۱۹۶۰، پژوهش‌های نظری نشان داد که سیاه چاله‌ ها به راستی یکی از پیش‌بینی‌های ژنریک نسبیت عام هستند. یافتن ستارگان نوترونی باعث شد تا وجود اجرام فشرده شده بر اثر رمبش گرانشی به عنوان یک واقعیت امکانپذیر فیزیکی مورد علاقه دانشمندان قرار گیرد. اینگونه پنداشته می‌شود که سیاه چاله ‌های ستاره ‌ای در جریان فروپاشی ستاره‌های بزرگ در یک انفجار ابرنواختری در پایان چرخه زندگیشان به ‌وجود می‌آیند. جرم یک سیاهچاله پس از شکل‌ گیری می‌تواند با دریافت جرم از پیرامونش افزایش یابد. با جذب ستارگان پیرامون و بهم پیوستن سیاهچاله‌های گوناگون، سیاهچاله‌های کلان جرم با جرمی میلیون‌ها برابر خورشید تشکیل می‌شوند.

سیاه چاله به دلیل اینکه نوری از آن خارج نمی ‌گردد نادیدنی است، اما می‌تواند بودن خود را از راه کنش و واکنش با ماده از پیرامون خود نشان دهد. از راه بررسی برهمکنش میان ستاره‌های دوتایی با همدم نامرئیشان، اخترشناسان نامزدهای احتمالی بسیاری برای سیاه چاله بودن در این منظومه‌ها شناسایی کرده‌اند. این باور جمعی در میان دانشمندان رو به گسترش است که در مرکز بیشتر کهکشان‌ها یک سیاه‌چاله کلان ‌جرم وجود دارد. برای نمونه، دستاوردهای ارزشمندی بازگوی این واقعیت است که در مرکز کهکشان راه شیری ما نیز یک سیاهچاله کلان جرم با جرمی بیش از چهار میلیون برابر جرم خورشید وجود دارد.

دانشمندان در ماه آوریل سال ۲۰۱۹ برای اولین بار عکسی از یک سیاهچاله گرفته و منتشر کردند.

تاریخچه سیاه چاله

ابداع واژه «کرم‌ چاله» و «سیاه‌ چاله فضایی» به جان ویلر نسبت داده شده ‌است. با این ‌حال، این مفهوم از مدت‌ها قبل به صورت‌های متفاوتی مطرح بوده ‌است.

مفهوم جسمی که آن قدر پرجرم است که حتی نور هم نمی‌تواند از آن بگریزد، نخستین بار از سوی زمین‌ شناسی به نام جان میچل در سال ۱۷۸۳ در نامه ‌ای که برای هنری کاوندیش از انجمن سلطنتی نوشته بود، مطرح شد. در آن زمان مفهوم نظریه گرانش نیوتن و مفهوم سرعت گریز شناخته شده بودند. طبق محاسبات میشل جسمی با شعاع خورشید و چگالی ۵۰۰ برابر در سطح خود سرعت گریزی بیش از سرعت نور خواهد داشت و بنابراین غیرقابل مشاهده خواهد بود. به بیان او:

اگر شعاع کره ‌ای مشابه خورشید قرار باشد که با چگالی ۵۰۰ بار از آن بزرگ‌ تر باشد، جسمی که از ارتفاع بینهایت به سمت آن سقوط می‌کند در سطح آن سرعتی بیش از سرعت نور به دست می‌آورد، و اگر فرض کنیم نور با نیروی مشابهی به سمت ستاره کشیده شود، آنگاه همه نوری که از چنین جسمی ساطع می‌شود به ناچار به وسیله گرانش آن به سمت خود ستاره بازمی‌گردد.

در سال ۱۷۹۶ پیر سیمون لاپلاس، ریاضی‌دان فرانسوی همان ایده را در ویرایش اول و دوم کتاب خود به نام آشکارسازی نظام جهان مطرح کرد. این مطالب در ویرایش‌های بعدی کتاب حذف شد. مفهوم این ستاره‌های تاریک در سده ۱۹ (میلادی) توجه چندانی را به خود جلب نکرد زیرا فیزیک دانان نمی‌توانستند درک کنند که نور که یک موج و بدون جرم است چگونه ممکن است تحت تأثیر نیروی گرانش قرار گیرد.

نسبیت عام در سیاه چاله

در سال ۱۹۱۵ آلبرت اینشتین که پیش تر نشان داده بود که گرانش، نور را تحت تأثیر قرار می‌دهد، نظریهٔ گرانش خود به نام نسبیت عام را مطرح کرد. چند ماه بعد کارل شوارتزشیلد پاسخی برای معادلات میدان اینشتین ارائه نمود که میدان گرانشی ذرات نقطه‌ای و کروی را توصیف می‌کرد. چند ماه پس از شوارتزشیلد، ژوهانس دروست – که از شاگردان هندریک لورنتز بود – به صورت جداگانه همان پاسخ را برای ذرات نقطه‌ای به دست آورد و بحث مفصل تری در مورد ویژگی‌های آن نمود. این پاسخ در شعاعی که امروزه شعاع شوارتزشیلد نامیده می‌شود رفتاری غیرعادی نمایش می‌داد. زیرا در این شعاع، معادله تکینه می‌شود و برخی از اجزای آن مقدار بی ‌نهایت خواهند داشت. در آن زمان ماهیت این سطح به درستی فهمیده نشده بود. در سال ۱۹۲۴ آرتور استنلی ادینگتون نشان داد که با تغییر مختصات می ‌توان تکینگی را بر طرف نمود. هر چند که تا سال ۱۹۳۳ طول کشید تا ژرژ لومتر متوجه شد که مقدار بی ‌نهایت این معادله در شعاع شوارتزشیلد در واقع یک تکینگی ریاضی است و جنبه فیزیکی ندارد. این شعاع امروزه به عنوان شعاع افق رویداد یک سیاه چاله غیر چرخشی شناخته می‌شود.

در سال ۱۹۳۰ سوبرامانیان چاندراسخار، اختر فیزیک دان هندی محاسبه نمود که یک جسم الکترون تباهیده غیر چرخنده که جرم آن از حدی که بعدها به نام حد چاندراسخار نامیده شد و ۱٫۴ برابر جرم خورشید است، بیشتر باشد هیچ جواب پایداری ندارد. ادعای وی از سوی هم دوره ‌ای‌ های وی همچون ادینگتون و لو لاندائو مورد مخالفت قرار گرفت. آن‌ها ادعا می‌کردند که مکانیزمی ناشناخته وجود دارد که از فروپاشی این اجرام جلوگیری می‌کند.ادعای آن‌ها تا حدودی درست بود زیرا یک کوتوله سفید که جرم آن اندکی از حد چاندراسخار بزرگتر باشد پس از فروپاشی به یک ستاره نوترونی تبدیل می‌شود که بنا بر اصل طرد پاولی، وضعیتی پایدار دارد، اما در سال ۱۹۳۹ روبرت اوپنهایمر و دیگران پیش‌ بینی کردند که ستاره‌های نوترونی که جرمی بیشتر از سه برابر جرم خورشید دارند به دلایلی که توسط چاندراسخار ارائه شد، به سیاه چاله فروپاشی می‌شوند و نتیجه ‌گیری کردند که هیچ سازوکار فیزیکی نمی‌تواند از فروپاشی برخی ستارگان به سیاه چاله جلوگیری نماید.

عمر طلایی

در سال ۱۹۵۸، دیوید فینکلشتین سطح شوارتز شیلد را به عنوان یک افق رویداد معرفی نمود، «یک غشای کاملاً یک جهته که تأثیرات سببی تنها از یک سو از آن عبور می‌کنند.» این مطلب تناقض صریحی با نتایج اوپنهایمر ندارد بلکه آن را گسترش می‌دهد تا ناظرین در حال سقوط به سیاه چاله را نیز شامل شود.

این نتایج مقارن بود با آغاز عصر طلایی نسبیت عام که در آن تحقیقات دربارهٔ نسبیت عام و سیاه چاله‌ها رونق فراوان یافت. کشف تپ اخترها در سال ۱۹۶۷ که در سال ۱۹۶۹ نشان داده شد که ستاره‌های نوترونی چرخنده با سرعت چرخش بالا هستند، به این فرایند کمک کرد.تا آن زمان ستارگان نوترونی مانند سیاه چاله‌ها تنها در حوزه تئوری مطرح بودند، اما کشف تپ اخترها نشان داد که واقعیت فیزیکی نیز دارند و باعث شد تا علاقه شدیدی به انواع اجسام فشرده‌ای که ممکن است بر اثر رمبش گرانشی تشکیل شوند برانگیخته شود. کشف اختروش (کوازار)ها که انرژی خروجی بسیار بزرگی آن‌ها این احتمال را مطرح نمود که ممکن است مکانیزم به ‌وجود آورنده این انرژی، رمبش گرانشی باشد.

در این دوره جواب‌های کلی تری نیز برای معادله سیاه چاله پیدا شد. روی کِر جواب دقیقی برای یک سیاه چاله چرخان به دست آورد. دو سال بعد ازرا نیومن یک جواب متقارن محوری برای سیاه چاله‌ای که هم چرخان باشد و هم دارای بار الکتریکی باشد کشف نمود. در نتیجه کارهای ورنر اسرائیل، براندون کارتر و دیوید رابینسون نظریه بدون مو ظهور کرد که با استفاده از پارامترهای متریک کر-نیومن، جرم، تکانه زاویه‌ای و بار الکتریکی یک سیاه چاله ثابت را توصیف نمود.

اگر مطلب ما برای شما مفید بود می توانید از طریق لینک های زیر آن را در شبکه های اجتماعی اشتراک گذاری کنید.

Share on telegram
Telegram
Share on whatsapp
WhatsApp
Share on facebook
Facebook
Share on linkedin
LinkedIn
Share on email
Email
Share on twitter
Twitter