فهرست سریع مطالب

تبلیغات
تبلیغات

سیاه چاله ، بخش دوم ( ویژگی و ساختار )

نظریه «بدون مو» جان ویلر بیان می ‌کند که هر سیاه چاله پس از اینکه تشکیل شد و به وضعیت پایداری رسید، تنها سه خاصیت فیزیکی مستقل دارد: جرم، بار الکتریکی، و اندازه حرکت زاویه‌ای.
امتیاز این نوشته از نظر شما عزیزان
5/5

طبق رسم سایت نهایت یادگیری روز های شنبه به مطالبی راجع به آسمان می پردازیم.شما عزیزان می توانید کانال تلگرام و کانال روبیکا و همچنین پیج نهایت یادگیری را دنبال کنید. می خواهیم به سیاه چاله ، این جرم نا شناخته ، بپردازیم در بخش اول به تاریخچه و عمر این اجرام پرداختیم ، در این بخش به ویژگی ها و ساختار آن ها می پردازیم در بخش سوم به شکل گیری و تکامل سیاه چاله ها می پردازیم ، در بخش چهارم به طبقه بندی آنان خواهیم پرداخت ، در بخش پنجم به شواهد تجربی می پردازیم و بالاخره در بخش آخر به دیگر موارد راجع به آنان می پردازیم.

نظریه «بدون مو» جان ویلر بیان می ‌کند که هر سیاه چاله پس از اینکه تشکیل شد و به وضعیت پایداری رسید، تنها سه خاصیت فیزیکی مستقل دارد: جرم، بار الکتریکی، و اندازه حرکت زاویه‌ای. از نظر مکانیک کلاسیک (غیر کوانتومی) دو سیاه چاله که دارای مقادیر یکسانی برای سه ویژگی یاد شده باشند، نامتمایز اند.

این سه ویژگی، ویژگی‌های خاصی هستند زیرا از بیرون سیاهچاله قابل مشاهده‌اند. مثلاً یک سیاه چاله باردار همچون هر جسم باردار دیگری بارهای همنام را دفع می ‌کند. به طریق مشابهی مجموع جرم درون کره‌ای که یک سیاه چاله را دربر می گیرد از طریق همتای قانون گاوس در مورد نیروهای گرانشی یعنی جرم ای. دی. ام نسبیت عام از فواصل بسیار دور اندازه‌ گیری نمود. به همین ترتیب تکانه زاویه‌ای یک سیاه چاله را نیز می‌توان از راه کشش چارچوب توسط میدان مغناطیس گرانشی به دست آورد.

وقتی جسمی به درون سیاه چاله‌ای سقوط می‌کند تمام اطلاعات فیزیکی مربوط به شکل جرم یا توزیع بار سطحی آن به‌ طور یکنواخت در امتداد افق رویداد توزیع می‌شود و از دید ناظر خارجی گم می‌شود. این رفتار افق رویداد به عنوان سیستم پراکنده ساز نامیده می‌شود و به آنچه در یک غشای کشی رسانا با اصطکاک و مقاومت الکتریکی رخ می‌دهد شباهت بسیار دارد. این تفاوت از آن دسته نظریه‌های میدانی مانند الکترومغناطیس است که به دلیلی معکوس‌ پذیری در زمان هیچ اصطکاک یا مقاومتی در سطح میکروسکوپیک ندارند. زیرا یک سیاه چاله در نهایت با سه پارامتر به حالت پایدار می‌رسد و هیچ راهی وجود ندارد که از گم شدن اطلاعات مربوط به شرایط اولیه اجتناب نمود: میدان‌های گرانشی و الکتریکی سیاه چاله اطلاعات بسیار اندکی در بارهٔ آنچه وارد سیاه چاله شده ‌است می‌دهند. اطلاعات گم شده شامل هر کمیتی است که از فاصله دور از افق رویداد یک سیاه چاله قابل اندازه‌ گیری نیستند. از جمله می‌توان از عدد باریونی و عدد لپتونی کل نام برد. این موضوع تا اندازه‌ای گیج ‌کننده ‌است که از آن به پارادوکس گم شدن اطلاعات سیاه چاله یاد می‌شود.

خواص فیزیکی

ساده ‌ترین نوع سیاه چاله‌ها آن ‌هایی هستند که تنها جرم دارند و بار الکتریکی و تکانه زاویه‌ای ندارند. این سیاه چاله‌ها را اغلب با نام سیاه چاله‌های شوارتزشیلد می ‌نامند که بر گرفته از نام کارل شوارتزشیلد است که جوابی برای معادلات میدانی انیشتین در سال ۱۹۱۶ ارائه نمود. بنا بر قضیه بیرخوف در نسبیت عام، تنها جواب خلأ است که متقارن کروی است. این بدان معنی است که تفاوتی میان میدان گرانشی یک سیاه چاله و یک جسم کروی با همان جرم وجود ندارد؛ بنابراین سیاه چاله تنها در محدوده نزدیک به افق آن است که همه چیز حتی نور را به درون می ‌کشد و در فواصل دورتر کاملاً مانند هر جسم دیگری با همان میزان جرم رفتار می‌کند.

راه حل‌هایی برای معادلات انیشتین که سیاه چاله‌های کلی تری را توصیف می ‌کنند نیز وجود دارند. مثلاً متریک رایسنر-نوردشتروم سیاه چاله‌های باردار و متریک کر سیاه چاله‌های چرخان را توصیف می‌کنند. کلی ‌ترین جواب موجود برای سیاه چاله‌های ثابت متریک کر-نیومن است که سیاه چاله‌هایی را توصیف می‌کند که هم بار الکتریکی وهم تکانه زاویه‌ای دارند.

در حالیکه جرم سیاه چاله می‌تواند هر مقداری داشته باشد، بار و تکانه زاویه‌ای آن توسط جرم محدود می‌شوند. چنانچه واحدهای پلانک را بکار ببریم، کل بار الکتریکی Q و مجموع تکانه زاویه‌ای J در این رابطه صدق می‌کنند(M جرم سیاه چاله‌ است): Q^{2}+\left({\tfrac  {J}{M}}\right)^{2}\leq M^{2}\,. سیاه چاله‌هایی که نا برابری فوق را اشباع می‌کنند، سیاه چاله‌های اکسترمال نامیده می‌شوند. جواب‌هایی نیز برای معادلات انیشتین موجودند که این نا برابری را نقض می ‌کنند اما این جواب‌ها افق رویداد ندارند. این جواب‌ها را تکینگی‌های برهنه می‌نامند که از بیرون قابل مشاهده‌اند و در نتیجه نمی ‌توانند فیزیکی باشند. فرضیه سانسور کیهانی شکل‌ گیری چنین تکینگی‌ هایی را در جریان رمبش نامحتمل می‌شمرد.

به دلیل قدرت نسبی الکترومغناطیس سیاه چاله‌هایی که از رمبش ستارگان تشکیل می‌شوند تمایل دارند که بار تقریباً خنثی ستاره را حفظ کنند. اما انتظار می‌رود که چرخش یک ویژگی مشترک در اجسام فشرده باشد. نامزد سیاه چاله قرار گرفته در دوتایی پرتو ایکس جی‌آراس ۱۹۱۵+۱۰۵ به نظر می‌رسد که تکانه زاویه‌ای نزدیک به حداکثر مقدار مجاز داشته باشد.

افق رویداد سیاه چاله

مهمترین ویژگی که یک سیاه چاله را تعریف می‌کند پیدایش افق رویداد است. افق رویداد به شکل کروی یا تقریباً کروی با شعاع شوارتزشیلد حول نقطه مرکزی سیاه چاله ‌است. این کره ناحیه‌ای از فضا زمان است که عبور نور و ماده از آن تنها در یک جهت و به طرف درون آن ممکن است. درون این کره سرعت گریز از سرعت نور بیشتر خواهد بود، و از آنجاییکه هیچ جسمی توانایی حرکت با سرعت بیشتر از سرعت نور را ندارد، هیچ جسمی توانایی گریز از این منطقه را ندارد. هر جرم یا انرژی که به یک سیاه چاله نزدیک شود، در داخل فاصله معینی که افق رویداد آن خوانده می‌شود، به ‌طور مقاومت ناپذیری به درون سیاه چاله کشیده می‌شود. نوری که از اطراف یک سیاه چاله عبور می‌کند، اگر به افق رویداد نرسد، روی مسیری منحنی شکل از کنار آن می‌گذرد و اگر به افق رویداد برسد، در سیاه چاله سقوط می‌کند. افق رویداد را از این رو به این نام می‌خوانند که از درون آن اطلاعات راجع به آن رخداد به مشاهده ‌کننده نمی ‌رسد و مشاهده ‌کننده نمی‌تواند یقین حاصل کند که این اتفاق رخ داده ‌است.

آنگونه که در نسبیت عام پیش‌بینی می‌شود، حضور یک جسم باعث خمش فضا-زمان می‌شود به گونه‌ای که مسیرهایی که ذرات طی می‌کنند به سمت جرم خمیده می‌شوند. در افق رویداد یک سیاه چاله این تغییر شکل به اندازه‌ای قوی می‌شود که هیچ مسیری که از سیاه چاله دور شود وجود نخواهد داشت.

از دید یک ناظر دور زمان در نزدیکی سیاه چاله کندتر از نقاط دورتر خواهد گذشت. این پدیده به نام اتساع زمان نامیده می‌شود. شیئی که به افق رویداد نزدیک شود به نظر خواهد رسید که هرچه نزدیکتر می‌گردد از سرعت آن کاسته می‌شود و زمانی بی‌نهایت طول خواهد کشید تا به آن برسد. و چون تمام فرایندهای این ذره کندتر می‌شود، نوری که منتشر می‌کند تاریکتر و قرمزتر خواهد شد که این اثر به نام انتقال به سرخ گرانشی نامیده می‌شود. سرانجام در نقطه‌ای که به افق رویداد می‌ رسد این جسم کاملاً تاریک و غیرقابل مشاهده می‌شود.

ازسوی دیگر ناظری که به درون سیاه چاله سقوط می‌کند، در زمانی که افق رویداد را رد می‌کند، متوجه هیچ‌کدام از این تأثیرات نخواهد شد. طبق ساعت خودش افق رویداد را در زمانی متناهی رد می‌کند. اگرچه هرگز نمی‌تواند بفهمد که دقیقاً در چه زمانی از افق رویداد رد شده‌ است. زیرا غیرممکن است که بتوان با مشاهدات محلی، موقعیت افق رویداد را تعیین کرد.

افق رویداد یک سطح جامد نیست و مانع ورود ماده یا تابشی که به سمت ناحیه داخل آن در حرکت است نمی‌شود. در واقع افق رویداد یک ویژگی تعریف شده سیاه چاله‌ است که حدود سیاه چاله را مشخص می‌کند. علت سیاه بودن افق رویداد هم این است که هیچ پرتوی نور یا تابش دیگری نمی‌تواند از آن بگریزد. از این رو افق رویداد هر آنچه را که درون آن اتفاق می‌افتد از دید دیگران پنهان نگه می‌دارد.

شکل افق رویداد یک سیاه چاله همیشه تقریباً کروی است. این تنها در مورد فضاهای چهار بعدی صادق است. در ابعاد بالاتر امکان توپولوژی ‌های پیچیده تری مانند حلقه سیاه پدید می‌آید. برای سیاه چاله‌های ایستای غیر چرخان این شکل کاملاً کروی است و برای سیاه چاله‌های چرخان کمی بیضوی است.

تکینگی

براساس نسبیت عام، مرکز یک سیاه چاله یک نقطه تکینگی گرانشی است، ناحیه‌ای که در آن خمیدگی فضا زمان بی‌نهایت می‌شود. برای یک سیاه چاله غیر چرخان این ناحیه به شکل یک نقطه منفرد و برای یک سیاه چاله چرخان به شکل یک تکینگی حلقوی روی صفحه چرخش خواهد بود. در هر دوی موارد حجم ناحیه تکینگی صفر است. به همین دلیل چگالی ناحیه تکینگی، بی‌نهایت خواهد بود.

ناظری که به درون یک سیاه چاله شوارتزشیلد سقوط می‌کند (یعنی بدون بار و تکانه زاویه‌ای) به محض اینکه از افق رویداد بگذرد دیگر نمی‌تواند در مقابل سرازیر شدن به سوی نقطه تکینگی جلوگیری کند. این ناظر می‌تواند تنها تا میزان محدودی زمان سقوطش را با سرعت گرفتن در جهت مخالف طولانی‌تر کند اما سرانجام به نقطه تکینگی سقوط خواهد کرد. زمانی که به این نقطه برسد به چگالی بی‌نهایت برخورد می‌کند و جرم آن به جرم سیاه چاله افزوده می‌شود. البته پیش از این اتفاق در طی فرایندی که به اسپاگتی سازی یا اثر نودلی معروف است، اجزای وی بر اثر نیروهای جزر و مدی در حال گسترش از هم گسیخته می‌شود.

در مورد یک سیاه چاله باردار (راه حل رایسنر-نوردستروم) یا چرخان (راه حل کر) می‌توان از تکینگی اجتناب نمود. چنانچه این جواب‌ها را تا حد امکان گسترش دهیم امکان فرضی خروج از سیاه چاله به یک فضا-زمان متفاوت خود را نمایان می‌سازد. در این صورت سیاه چاله به صورت یک کرم‌ چاله عمل می‌کند. اما فرضیه سفر به دنیاهای دیگر تنها به صورت فرضیه می‌ماند زیرا آشفتگی امکان آن را از بین می‌برد. همچنین این فرضیه مطرح می‌شود که منحنی‌های زمان گونه بسته را در اطراف تکینگی دنبال کرد و به گذشته خود فرد سفر کرد که در نهایت به طرح مشکلاتی در قانون علیت مانند پارادوکس پدربزرگ می‌ انجامد.

پیدایش تکینگی هاگی در نسبیت عام را عموماً نشانه‌ای از شکست این نظریه می‌پندارند؛ اما این شکست بر خلاف انتظار نیست. این شکست در مواردی رخ می‌دهد که بخواهیم این کنش‌ها را با استفاده از تأثیرات مکانیک کوانتومی، ناشی از چگالی بسیار بالا و سرانجام تعامل ذرات توصیف کنیم. تا کنون این امر میسر نشده ‌است که بتوانیم تأثیرات گرانشی و کوانتومی را در یک تئوری با هم ترکیب نمود. مورد انتظار عموم این است که یک تئوری گرانش کوانتومی خواهد توانست ویژگی سیاه چاله‌ها را بدون تکینگی بیان کند.

کُره فوتونی سیاه چاله

کره فوتونی، محدوده‌ای کروی با ضخامت صفراست. فوتون ‌هایی که در طول مسیر مماس (در امتداد تانژانت‌ها) بر این کره حرکت می‌کنند در مداری دایره‌ای گرد آن به دام می‌افتند. در سیاه چاله‌های غیرچرخشی شعاع فوتون کره یک و نیم برابر شعاع افق رویداد (شوارتزشیلد) است. این مدارها از نظر دینامیکی ناپایدار اند و به همین جهت هر آشفتگی کوچکی (مثل سقوط یک ذره مادی) در طول زمان گسترش می‌یابد و به صورت حرکت پرتابی به خارج سیاه چاله یا به شکل حلزونی در نهایت از افق رویداد می‌گذرد.

در حالیکه نور هنوز می‌تواند از داخل کره فوتونی بگریزد، هر نوری که از کره فوتونی عبور کند در یک حرکت پرتابی به داخل سیاهچاله کشیده می‌شود؛ بنابراین نوری که از درون کره فوتونی به ما می‌رسد باید از اجسامی تابیده شده باشد که درون کره فوتونی هستند اما هنوز به افق رویداد نرسیده‌اند.

سایر اجرام فشرده همچون ستاره‌های نوترونی نیز می‌توانند کره‌های فوتونی داشته باشند. این امر ناشی از این حقیقت است که میدان گرانشی یک شی به اندازه واقعی آن بستگی ندارد، از این رو هر جسم که کوچکتر از ۱٫۵ برابر شعاع شوارتزشیلد متناظر با جرمش باشد می‌تواند کره فوتونی داشته باشد.

ارگوسفر

سیاه چاله ‌های چرخان در درون ناحیه‌ای از فضا و زمان محصورند که در آن ثابت ماندن غیرممکن است. این ناحیه را ارگوسفر می‌نامند. این پدیده ناشی از فرایندی به نام کشش چارچوب است. تئوری نسبیت عام پیش‌بینی می‌کند که هر جسم در حال چرخش تمایل دارد که فضا-زمان اطراف نزدیک خود را بکشد. هر جسم نزدیک به جسم چرخان تمایل خواهد داشت که در جهت چرخش حرکت کند. برای یک سیاه چاله چرخان در نزدیکی افق رویدادش این اثر به اندازه‌ای قدرتمند می‌شود که جسم مجبور است که با سرعتی بالاتر از سرعت نور در جهت مخالف بچرخد تا تنها بتواند ثابت بماند.

ارگوسفر یک سیاه چاله از درون به افق رویداد می‌رسد و از بیرون به یک کره بیضوی که در قطبش با کره افق رویداد مماس می‌شود و قسمت استوایی آن بسیار پهن‌تر از سایر قسمت‌ها است پایان می‌یابد. این مرز خارجی ارگوسفر را گاهی سطح ارگو می‌نامد.

اجسام و تابش می‌توانند به ‌طور عادی از ارگوسفر بگریزند. بنا بر فرایند پنروز اجسامی که از ارگوسفر خارج می‌شوند ممکن است انرژی بیشتر از انرژی ورودشان داشته باشند. این انرژی از انرژی چرخشی سیاه چاله گرفته می‌شود و باعث کندتر شدن سرعت آن می‌شود.

ذخیره اطلاعات در سیاه چاله

استیون هاوکینگ فیزیکدان ممتاز بریتانیایی در اوت ۲۰۱۵ گفت که سیاه چاله ‌ها اطلاعات مربوط به چیزهایی که در درون آن‌ها سقوط می‌کند را ذخیره می‌کنند. ابتدا تصور می‌شد که این اطلاعات از بین می‌رود، اما معلوم شد که این ناقض قوانین فیزیک کوانتوم خواهد بود. همزمان، قوانین مکانیک کوانتومی حکم می‌کند که همه چیز در جهان ما می‌تواند به اطلاعات تجزیه شود، برای مثال، به یک رشته صفر و یک. اما براساس نظریه نسبیت عام اینشتین، این اطلاعات باید نابود شود. این معما به پارادوکس اطلاعات معروف است. به باور هاوکینگ این اطلاعات ممکن است اصلاً وارد سیاه چاله نشود، بلکه در سرحد آن باقی بماند. بر اساس این قوانین، این اطلاعات هرگز محو نمی‌شود، نه حتی وقتی توسط سیاه چاله بلعیده می‌شود. او گفت: “برخلاف آنچه انتظار می‌رود این اطلاعات در داخل سیاه چاله ذخیره نمی‌شود، بلکه در سرحد آن، یعنی همان افق رویداد، ذخیره می‌شود. این اطلاعات در افق رویداد به یک هولوگرام دو بعدی بدل می‌شود (پدیده‌ای که به ابربرگردان (super translation) موسوم است). هاوکینگ گفت: “ایده ما این است که ابربرگردان‌ها، هولوگرام ذرات وارد شونده هستند؛ بنابراین، شامل همه اطلاعاتی هستند که در غیر این صورت از میان خواهد رفت.”

بر اساس نظریه نسبیت عام اینشتین، که می‌گوید این اطلاعات باید نابود شود و به معما یا پارادوکس اطلاعات سیاه‌ چاله معروف است ماده‌ای به درون سیاه چاله بلعیده می‌شود، و در آن سوی افق رویداد می‌افتد.

هولوگرام ظاهراً نشان می‌دهد که تصویر اینشتین از سیاه چاله درست نیست. به ویژه این‌ که، اصلاً معلوم نیست که سیاه چاله‌ها دارای ‘بخش درونی’ باشند (ماده‌ای که مکیده می‌شود ممکن است در افق رویداد گیر کند و به عنوان هولوگرام آن‌جا حفظ شود).

اگر مطلب ما برای شما مفید بود می توانید از طریق لینک های زیر آن را در شبکه های اجتماعی اشتراک گذاری کنید.

Share on telegram
Telegram
Share on whatsapp
WhatsApp
Share on facebook
Facebook
Share on linkedin
LinkedIn
Share on email
Email
Share on twitter
Twitter